This study proposed an innovative strategy of catalytic cracking of tar during biomass pyrolysis/gasification using furfural residue derived biochar-based catalysts. Fe, Co, and Ni modified furfural residue char (FRC-Fe, FRC-Co, and FRC-Ni) were prepared by one-step impregnation method. The influences of cracking temperature and metal species on the tar cracking characteristics were investigated. The results showed that the tar conversion efficiency for all catalysts were improved with the cracking temperature increasing, the higher tar conversion efficiency achieved at 800 °C were 66.72 %, 89.58 %, 84.58 %, and 94.70 % for FRC, FRC-Fe, FRC-Co, and FRC-Ni respectively. FRC-Ni achieved the higher gas (H, CO, CH, CO) yield 681.81 mL/g. At 800 °C, the catalyst (FRC-Ni) still reached a high tar conversion efficiency over 85.90 % after 5 cycles. SEM-EDS results showed that the distribution of Ni particles on the biochar support was uniform. TGA results demonstrated that FRC-Ni exhibited better thermal stability. XRD results indicated that there was no significant change in the grain size of Ni before and after the reaction. The FRC-Ni catalyst was reasonably stable due to its better anti-sintering and coke-resistant capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.03.013 | DOI Listing |
Polymers (Basel)
December 2024
Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Resource use is crucial for the sustainable growth of energy and green low-carbon applications since the improper handling of biomass waste would have a detrimental effect on the environment. This paper used nano-ZnO and ammonium persulfate ((NH)SO, APS) as a template agent and heteroatom dopant, respectively. Using a one-step carbonization process in an inert atmosphere, the biomass waste furfural residue (FR) was converted into porous carbon (PC), which was applied to the supercapacitor electrode.
View Article and Find Full Text PDFJ Sci Food Agric
October 2024
College of Chemistry and Chemical Engineering, Jishou University, Jishou, China.
J Agric Food Chem
October 2024
ANSES Fougères Laboratory, French Agency for Food, Environment and Occupational Health & Safety, French and European Union Reference Laboratory for Veterinary Medicinal Product Residues and Pharmacologically Active Dye Residues in Food, 10 B rue Claude Bourgelat - Javené, CS 40608, Fougères Cedex 35306, France.
Nitrofurazone (NFZ) antibiotic is banned in food-producing animals, and its metabolite, semicarbazide (SEM), is used as a marker residue for nitrofurazone abuse. However, SEM can also be generated during food processing without veterinary treatment. Therefore, SEM cannot be considered an unequivocal marker of NFZ.
View Article and Find Full Text PDFJ Food Sci
November 2024
College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China.
This study evaluated the structural changes in hemicellulose and cellulose from sunflower seeds before and after roasting at 160°C, 190°C, and 220°C. Sugar composition, molecular weight, Fourier transform infrared spectrometry, thermogravimetric, and NMR analyses were utilized to determine the structural properties of these polysaccharides and detect the volatile compounds. The results showed that roasting destroyed the microstructure of these hemicelluloses and cellulose.
View Article and Find Full Text PDFChemSusChem
September 2024
Institute for Bio and Geo Sciences, Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
This study adapts the biphasic OrganoCat system into a flow-through (FT) reactor, using a heated tubular setup where a mixture of oxalic acid and 2-methyltetrahydrofuran (2-MTHF) is pumped through beech wood biomass. This method minimizes solvent-biomass contact time, facilitating rapid product removal and reducing the risk of secondary reactions. A comparative analysis with traditional batch processes reveals that the FT system, especially under severe conditions, significantly enhances extraction efficiency, yielding higher amounts of lignin and sugars with reduced solid residue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!