In this paper, we designed and synthesized a two-dimensional fluorescent covalent organic framework (TAPB-DMTP-COF) for the precise determination of HO content in methanol. The COF was synthesized using two typical monomers by grinding method, which significantly reduced the synthesis time. By adjusting the pH value of the COF suspension to 4.0, the portion of the COF material structure is disrupted, thereby mitigating π-π stacking and resolving the aggregation-caused quenching (ACQ) effect. Consequently, the non-fluorescent TAPB-DMTP-COF exhibited blue-purple fluorescence emission in methanol. At the same time, it is observed that in the presence of HO, there is a red shift in the maximum fluorescence emission peak of TAPB-DMTP-COF, which correlates with the HO content within a specific range. Notably, this redshift demonstrates a linear relationship with HO content from 4% to 80% in methanol. Our work presents novel insights for efficient analysis and detection of HO content in methanol and could be used for HO detection in other organic solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124140 | DOI Listing |
Talanta
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China. Electronic address:
Natural polyphenolic antioxidants are widely present in foods such as fruits and vegetables, meanwhile applied in food processing and storage to prevent the formation of harmful compounds. While excessive antioxidants lead to negative impacts on human health. Hence, it is crucial to accurately detect antioxidant levels in order to enhance the overall nutritional content and food safety.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.
View Article and Find Full Text PDFNat Chem
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.
View Article and Find Full Text PDFNat Chem Biol
January 2025
University of Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Innsbruck, Austria.
Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!