Rapid and sensitive in situ detection of heavy metals in fish using enhanced Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Collage of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia. Electronic address:

Published: May 2024

Heavy metals have been widely applied in industry, agriculture, and other fields because of their outstanding physics and chemistry properties. They are non-degradable even at low concentrations, causing irreversible harm to the human and other organisms. Therefore, it is of great significance to develop high accuracy and sensitivity as well as stable techniques for their detection. Raman scattering spectroscopy and atomic absorption spectrophotometer (AAS) were used parallelly to detect heavy metal ions such as Hg, Cd, and Pb of different concentrations in fish samples. The concentration of the heavy metals is varied from 5 ppb to 5 ppm. Despite the satisfactory recoveries of AAS, their drawbacks are imperative for an alternative technique. In Raman scattering spectroscopy, the intensities and areas of the characteristic peaks are increased with increasing the concentration of the heavy metals. For Hg concentration ≥ 1 ppm, a slight shift is observed in the peak position. The obtained values of peak intensity and peak area are modeled according to Elvoich, Pseudo-first order, Pseudo-second order, and asymptotic1 exponential model. The best modeling was obtained using the Elovich model followed by the asymptotic1 exponential model. The introduced Raman spectroscopy-based approach for on-site detection of trace heavy metal pollution in fish samples is rapid, low-cost, and simple to implement, increasing its visibility in food safety and industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124082DOI Listing

Publication Analysis

Top Keywords

heavy metals
16
raman scattering
8
scattering spectroscopy
8
heavy metal
8
fish samples
8
concentration heavy
8
asymptotic1 exponential
8
exponential model
8
heavy
6
rapid sensitive
4

Similar Publications

Patient-reported outcomes of zirconia dental implants: a systematic review and future directions.

J Patient Rep Outcomes

January 2025

Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria.

Purpose: Zirconia dental implants show excellent biocompatibility and tissue integration, low affinity for plaque, and favorable biomechanical properties. However, these objective measures do not adequately replicate the patient's perception. This systematic review evaluated the evidence on patient-reported outcome (PROs) in zirconia dental implant treatment.

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF

This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!