Agricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp. collected from three greenhouses for cultivation of tomatoes irrigated with RWW. The model estimates the risk of infection by enteropathogenic E. coli associated with consumption of tomatoes and the risk of eye-infection caused by Pseudomonas aeruginosa in cultivation soil through hand-to-eye contacts. The fraction of antibiotic resistant (AR)-E. coli measured in irrigation water and AR-Pseudomonas spp. in soil was incorporated in the model to estimate the survival of ARB and antibiotic susceptible bacteria in the presence of trace level of antibiotics in human body. The results showed that the risk of E. coli infection through consumption of tomatoes irrigated with RWW is within the WHO and USEPA recommended risk threshold (<10); Pseudomonas aeruginosa eye-infection risk is at or below the acceptable risk level. The presence of residual antibiotic in human body reduced the overall risk probabilities of infections but selectively enhanced the survival of ARB in comparison to their susceptible counterparts, which resulted in antibiotic untreatable infection. Therefore, the outcomes of this study call for a new risk threshold for antibiotic untreatable infections and highlight the key importance of adopting work safety measures for better human health protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121437DOI Listing

Publication Analysis

Top Keywords

antibiotic resistant
8
tomatoes irrigated
8
irrigated rww
8
consumption tomatoes
8
assessment antibiotic-resistant
4
antibiotic-resistant infection
4
infection risks
4
risks associated
4
associated reclaimed
4
reclaimed wastewater
4

Similar Publications

Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.

View Article and Find Full Text PDF

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Background: The Infectious Diseases Society of America (IDSA) publishes annual guidance on the treatment of antimicrobial-resistant (AMR) gram-negative infections. Within the AMR guidance, suggested dosages of antibiotics for adults infected with AMR pathogens are provided. This document serves as a companion document to the IDSA guidance to assist pediatric specialists with dosing β-lactam agents for the treatment of AMR infections in children.

View Article and Find Full Text PDF

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!