Talbot effect, characterized by the replication of a periodic optical field in a specific plane, is governed by diffraction and dispersion in the spatial and temporal domains, respectively. In mode-locked lasers, Talbot effect is rarely linked with soliton dynamics since the longitudinal mode spacing and cavity dispersion are far away from the self-imaging condition. We report switchable breathing and stable dissipative Talbot solitons in a multicolor mode-locked fiber laser by manipulating the frequency difference of neighboring spectra. The temporal Talbot effect dominates the laser emission state-in the breathing state when the integer self-imaging distance deviates from the cavity length and in the steady state when it equals the cavity length. A refined Talbot theory including dispersion and nonlinearity is proposed to accurately depict this evolution behavior. These findings pave an effective way to control the operation in dissipative optical systems and open branches in the study of nonlinear physics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936956 | PMC |
http://dx.doi.org/10.1126/sciadv.adl2125 | DOI Listing |
Sci Adv
March 2024
MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, and Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
Talbot effect, characterized by the replication of a periodic optical field in a specific plane, is governed by diffraction and dispersion in the spatial and temporal domains, respectively. In mode-locked lasers, Talbot effect is rarely linked with soliton dynamics since the longitudinal mode spacing and cavity dispersion are far away from the self-imaging condition. We report switchable breathing and stable dissipative Talbot solitons in a multicolor mode-locked fiber laser by manipulating the frequency difference of neighboring spectra.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
The profound understanding and detailed evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (SCoV2-S) protein and specific antibody interaction mechanism is of high importance in the development of immunosensors for COVID-19. In the present work, we studied a model system of immobilized SCoV2-S protein and specific monoclonal antibodies by molecular dynamics of immune complex formation in real time. We simultaneously applied spectroscopic ellipsometry and quartz crystal microbalance with dissipation to reveal the features and steps of the immune complex formation.
View Article and Find Full Text PDFPhys Rev Lett
August 2022
The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Biochim Biophys Acta Bioenerg
April 2020
UMR 7245 MCAM, Muséum National d'Histoire Naturelle - CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris Cedex 05, France. Electronic address:
Photosynthetic organisms need to sense and respond to fluctuating environmental conditions, to perform efficient photosynthesis and avoid the formation of harmful reactive oxygen species. Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome, the extramembranal light-harvesting antenna. This mechanism is triggered by the photoactive orange carotenoid protein (OCP).
View Article and Find Full Text PDFPhys Rev Lett
February 2019
Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!