This study employed a genome-wide association study (GWAS) to investigate the relationship between telomere length and marginal bone loss (MBL), a marker of bone health and aging. Telomere length, a biological indicator of aging, was analyzed alongside several serum markers of bone loss. Following a screen for appropriate instrumental variables, telomere length was designated as the exposure variable. We conducted the main analysis using random-effects inverse variance weighting (IVW) and supplemented it with MR Egger, weighted median, simple mode, and weighted mode analyses, employing a total of five methods. Positive outcomes underwent scrutiny through heterogeneity analysis, horizontal multiplicity analysis, and leave-one-out plot. Subsequently, the effective gene locus was chosen for a reverse MR analysis, with positive results serving as the exposure variable. We found a causal relationship between telomere length and the expression of osteocalcin (OC), matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-12 (MMP-12), key markers of bone metabolism. Our findings suggest that telomere wear and shortening may contribute to increased activity of OC, MMP-3, and MMP-12, thus affecting bone metabolism. However, reverse Mendelian randomization analysis did not indicate a significant impact of OC, MMP-3, and MMP-12 on telomere length, implying a unidirectional relationship. Overall, this meta-analysis underscores the association between telomere length and bone loss, highlighting the importance of timing and duration of telomere wear and shortening in influencing bone metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-04899-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!