Affinity Purification of Membrane β-Barrel Proteins via Biotin-Tagged Peptidiscs.

Methods Mol Biol

Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.

Published: March 2024

β-barrel membrane proteins play a crucial role in bacterial pathogenesis and antibiotic resistance, making them a prime focus for the development of new antibiotics and therapeutics. However, their inherent hydrophobic nature and limited presence pose challenges for their high-throughput characterization using conventional methods. In this context, we present a simple but efficacious approach using peptidisc, a membrane mimetic, to overcome the low abundance and hydrophobicity of these proteins. Our methodology, illustrated here using Escherichia coli (E. coli) as a model organism, covers the entire process from outer membrane fraction preparation to data analysis. This detailed protocol outlines the purification of a diverse collection of β-barrel membrane proteins, rendering them water-soluble and readily amenable to mass spectrometry and downstream drug screening strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3734-0_10DOI Listing

Publication Analysis

Top Keywords

β-barrel membrane
8
membrane proteins
8
membrane
5
affinity purification
4
purification membrane
4
membrane β-barrel
4
proteins
4
β-barrel proteins
4
proteins biotin-tagged
4
biotin-tagged peptidiscs
4

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?

J Nanobiotechnology

January 2025

Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.

Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Background: Oliguric acute kidney injury (AKI) is one of the critical conditions which needs emergent treatment due to the lack of the capacity of excreting toxins and fluids, and plasma membrane bleb formation is considered as one of the characteristic morphologic alterations in ischemic AKI in both animal models and human. We present here an autopsy case with clear electron microscopy images capturing a definitive instance of blebbing in ischemic AKI.

Case Presentation: A 66-year-old man was admitted for oliguric AKI with nephrotic syndrome (NS).

View Article and Find Full Text PDF

Background: The excessive use of antibiotics is a major contributor to the global issue of antimicrobial resistance (AMR), a significant threat to human and animal health. Hence, assessing new strategies for managing Multi-Drug Resistant (MDR) microorganisms is vital. In this study, the use of mechanically isolated mature adipose cells (MIMACs) and their lysate (Adipolysate) as a new sustainable antimicrobial agent was assessed against Methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!