The clinical use of therapeutic monoclonal antibodies (mAbs) for the treatment of cancer, inflammation, and other indications has been successfully established. A critical aspect of drug-antibody pharmacokinetics is immunogenicity, which triggers an immune response via an anti-drug antibody (ADA) and forms drug/ADA immune complexes (ICs). As a consequence, there may be a reduced efficacy upon neutralization by ADA or an accelerated drug clearance. It is therefore important to understand immunogenicity in biological therapies. A drug-like immunoglobulin G (IgG) was radiolabeled with tritium, and ICs were formed using polyclonal ADA, directed against the complementary-determining region of the drug-IgG, to investigate in vivo biodistribution in rodents. It was demonstrated that 65% of the radioactive IC dose was excreted within the first 24 h, compared with only 6% in the control group who received non-complexed H-drug. Autoradiographic imaging at the early time point indicated a deposition of immune complexes in the liver, lung, and spleen indicated by an increased radioactivity signal. A biodistribution study confirmed the results and revealed further insights regarding excretion and plasma profiles. It is assumed that the immune complexes are readily taken up by the reticuloendothelial system. The ICs are degraded proteolytically, and the released radioactively labeled amino acids are redistributed throughout the body. These are mainly renally excreted as indicated by urine measurements or incorporated into protein synthesis. These biodistribution studies using tritium-labeled immune complexes described in this article underline the importance of understanding the immunogenicity induced by therapeutic proteins and the resulting influence on biological behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-024-00899-6 | DOI Listing |
The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Laboratoire de physique de l'École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France.
T cells recognize a wide range of pathogens using surface receptors that interact directly with peptides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.
View Article and Find Full Text PDFHeliyon
December 2024
Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto M5S 2E3, Canada.
Immune complexes (ICs), formed via antibody (Ab)-antigen (Ag) binding, trigger diverse immune responses, which are critical for natural immunity and have uses for vaccines and immunotherapies. While IC-elicited immune responses depend on its structure, existing methods for IC synthesis produce heterogeneous assemblies, which limits control over their cellular interactions and pharmacokinetics. In this study, we demonstrate the use of DNA origami to create synthetic ICs with defined shape, size, and solubility by displaying Ags in prescribed spatial patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!