A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive Machine Learning Approach for Importance Evaluation of Multimodal Breast Cancer Radiomic Features. | LitMetric

Breast cancer holds the highest diagnosis rate among female tumors and is the leading cause of death among women. Quantitative analysis of radiological images shows the potential to address several medical challenges, including the early detection and classification of breast tumors. In the P.I.N.K study, 66 women were enrolled. Their paired Automated Breast Volume Scanner (ABVS) and Digital Breast Tomosynthesis (DBT) images, annotated with cancerous lesions, populated the first ABVS+DBT dataset. This enabled not only a radiomic analysis for the malignant vs. benign breast cancer classification, but also the comparison of the two modalities. For this purpose, the models were trained using a leave-one-out nested cross-validation strategy combined with a proper threshold selection approach. This approach provides statistically significant results even with medium-sized data sets. Additionally it provides distributional variables of importance, thus identifying the most informative radiomic features. The analysis proved the predictive capacity of radiomic models even using a reduced number of features. Indeed, from tomography we achieved AUC-ROC using 19 features and using 7 of them; while from ABVS we attained an AUC-ROC of using 22 features and using only 3 features. Although the predictive power of DBT outperforms ABVS, when comparing the predictions at the patient level, only 8.7% of lesions are misclassified by both methods, suggesting a partial complementarity. Notably, promising results (AUC-ROC ABVS-DBT - ) were achieved using non-geometric features, thus opening the way to the integration of virtual biopsy in medical routine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300750PMC
http://dx.doi.org/10.1007/s10278-024-01064-3DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
radiomic features
8
auc-roc features
8
features
7
breast
6
adaptive machine
4
machine learning
4
learning approach
4
approach evaluation
4
evaluation multimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!