Purpose: The porcine retina represents an optimal model system to study treatment approaches for inherited retinal dystrophies owing to close anatomical similarities to the human retina, including a cone enriched visual streak. The aim of this work was to establish a protocol to keep explants in culture for up to 28 days with good morphological preservation.
Methods: Two to four retina explants per eye were obtained from the central part of the retina and transferred onto a membrane insert with the photoreceptors facing down. Different medium compositions using Neurobasal-A medium containing 100 or 450 mg/dL glucose and combinations of fetal calf serum, B-27 with or without insulin and N-2 were tested. We developed a tissue quality score with robust markers for different retinal cell types (protein kinase C alpha, peanut agglutinin and 4',6-diamidino-2-phenylindol).
Results: Retinae were kept until 28 days with only little degradation. The best results were attained using Neurobasal-A medium containing 100 mg/dL glucose supplemented with B-27 containing insulin and N-2. For an easy preparation process, it is necessary to minimize transport time and keep the eyes on ice until dissected. Heat-mediated decontamination by the butcher has to be avoided.
Conclusions: Using a standardized protocol, porcine retina explants represent an easy to handle intermediate model between in vitro and in vivo experimentation. This model system is robustly reproducible and contributes to the implementation of the 3R principle to minimize animal experimentation.
Translational Relevance: This model can be used to test future therapeutic approaches for inherited retinal dystrophies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941994 | PMC |
http://dx.doi.org/10.1167/tvst.13.3.9 | DOI Listing |
Ophthalmol Sci
November 2024
Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Purpose: Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole.
View Article and Find Full Text PDFDevelopment
December 2024
Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada.
Cutan Ocul Toxicol
December 2024
Edward Harkness Institute of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, USA.
Acta Neuropathol Commun
November 2024
Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
Invest Ophthalmol Vis Sci
November 2024
Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States.
Purpose: Oxidative stress in the retinal pigmented epithelium (RPE) has been implicated in age-related macular degeneration by impacting endocytic trafficking, including the formation, content, and secretion of extracellular vesicles (EVs). Using our model of polarized primary porcine RPE (pRPE) cells under chronic subtoxic oxidative stress, we tested the hypothesis that RPE miRNAs packaged into EVs are secreted in a polarized manner and contribute to maintaining RPE homeostasis.
Methods: Small EVs (sEVs) enriched for exosomes were isolated from apical and basal conditioned media from pRPE cells grown for up to four weeks with or without low concentrations of hydrogen peroxide using two sEV isolation methods, leading to eight experimental groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!