We report the one-pot synthesis of a chabazite (CHA)/erionite (ERI)-type zeolite intergrowth structure characterized by adjustable extents of intergrowth enrichment and Si/Al molar ratios. This method utilizes readily synthesizable 6-azaspiro[5.6]dodecan-6-ium as the exclusive organic structure-directing agent (OSDA) within a potassium-dominant environment. High-throughput simulations were used to accurately determine the templating energy and molecular shape, facilitating the selection of an optimally biselective OSDA from among thousands of prospective candidates. The coexistence of the crystal phases, forming a distinct structure comprising disk-like CHA regions bridged by ERI-rich pillars, was corroborated via rigorous powder X-ray diffraction and integrated differential-phase contrast scanning transmission electron microscopy (iDPC S/TEM) analyses. iDPC S/TEM imaging further revealed the presence of single offretite layers dispersed within the ERI phase. The ratio of crystal phases between CHA and ERI in this type of intergrowth could be varied systematically by changing both the OSDA/Si and K/Si ratios. Two intergrown zeolite samples with different Si/Al molar ratios were tested for the selective catalytic reduction (SCR) of NO with NH, showing competitive catalytic performance and hydrothermal stability compared to that of the industry-standard commercial NH-SCR catalyst, Cu-SSZ-13, prevalent in automotive applications. Collectively, this work underscores the potential of our approach for the synthesis and optimization of adjustable intergrown zeolite structures, offering competitive alternatives for key industrial processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c15810DOI Listing

Publication Analysis

Top Keywords

one-pot synthesis
8
zeolite intergrowth
8
organic structure-directing
8
structure-directing agent
8
si/al molar
8
molar ratios
8
crystal phases
8
idpc s/tem
8
intergrown zeolite
8
synthesis cha/eri-type
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!