Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262142PMC
http://dx.doi.org/10.1093/jbmr/zjae023DOI Listing

Publication Analysis

Top Keywords

rankl inhibition
12
osteoclast formation
8
formation activity
8
withdrawal rankl
8
rebound bone
8
bone loss
8
denosumab discontinuation
8
bone resorption
8
bone
5
temporal patterns
4

Similar Publications

Purpose: The study aimed to investigate the effect and mechanism of monotropein on renal cell carcinoma (RCC).

Methods: After monotropein and NF-κB receptor activator (RANKL) treatment, cell proliferation, invasion, and apoptosis were evaluated using CCK-8, Transwell, and flow cytometry. Primary macrophages co-cultured with monotropein-treated RCC cells were analyzed to evaluate macrophage polarization using qRT-PCR, western blot, and ELISA assays by detecting the expression of M2 markers (CD206, CD168) and cytokines (IL-10, TGF-β).

View Article and Find Full Text PDF

Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner.

Life (Basel)

November 2024

Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.

A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) expression in mesenchymal stem cells (MSCs) has been shown to play a pivotal role in modulating cartilage regeneration and immune responses, particularly in the context of diseases that involve both degenerative processes and inflammation, such as osteoarthritis (OA). However, the precise mechanism through which IL-6 and other immune-regulatory factors influence the therapeutic efficacy of autologous adipose-derived stem cells (ASCs) transplantation in OA treatment remains to be fully elucidated. This study aims to investigate the relationship between IL-6 expression in autologous ASCs isolated from OA patients and their impact on immune modulation, particularly focusing on the regulation of Receptor Activator of Nuclear factor Kappa-Β Ligand (RANKL), a key mediator of immune-driven cartilage degradation in OA.

View Article and Find Full Text PDF

Dehydroepiandrosterone and Bone Health: Mechanisms and Insights.

Biomedicines

December 2024

Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.

Dehydroepiandrosterone (DHEA), a steroid hormone produced by the adrenal glands, plays a key role in various physiological processes, including bone health. Its age-related decline is linked to reduced bone density, though the mechanisms by which DHEA affects bone metabolism remain complex. This review summarises the diverse effects of DHEA on bone metabolism and density, highlighting its therapeutic potential; Methods: A literature search on the effects of DHEA on bone-related parameters was conducted from PubMed and Scopus using a specific search string, and after removing duplicates and irrelevant articles, 36 relevant full-text studies were included; Results: DHEA promotes osteoblast differentiation and proliferation, regulates the RANKL/OPG ratio, and inhibits osteoclastogenesis and bone resorption.

View Article and Find Full Text PDF

Visfatin Enhances RANKL-Induced Osteoclastogenesis In Vitro: Synergistic Interactions and Its Role as a Mediator in Osteoclast Differentiation and Activation.

Biomolecules

November 2024

Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.

Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!