Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low-power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)-based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo-synaptic properties of covalently bonded Tellurium sulfur oxide (TeSO) and Tellurium selenium oxide (TeSeO)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSO and TeSeO multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSO multirope-based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeO multirope-based transistor exhibits photosensory synaptic responses to UV-vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW to 365 nm UV light. This result is among the highest reported for Te-heterostructure-based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm), potentially useful for optical neuromorphic computing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202310013 | DOI Listing |
Adv Mater
December 2024
Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain.
Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.
View Article and Find Full Text PDFSmall Methods
December 2024
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China.
Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
Domain walls are quasi-one-dimensional topological defects in ferroic materials, which can harbor emergent functionalities. In the case of ferroelectric domain wall (FEDW) devices, an exciting frontier has emerged: memristor-based information storage and processing approaches. Memristor solid-state FEDW devices presented thus far, however predominantly utilize a complex network of domain walls to achieve the desired regulation of density and charge state.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
A synaptic memristor using 2D ferroelectric junctions is a promising candidate for future neuromorphic computing with ultra-low power consumption, parallel computing, and adaptive scalable computing technologies. However, its utilization is restricted due to the limited operational voltage memory window and low on/off current (I) ratio of the memristor devices. Here, it is demonstrated that synaptic operations of 2D InSe ferroelectric junctions in a planar memristor architecture can reach a voltage memory window as high as 16 V (±8 V) and I ratio of 10, significantly higher than the current literature values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!