Hybridization of layered double hydroxides with functional particles.

Dalton Trans

School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.

Published: April 2024

Layered double hydroxides (LDHs) are a class of materials with useful properties associated with their anion exchange abilities as well as redox and adsorptive properties for a wide range of applications including adsorbents, catalysts and their supports, electrodes, pigments, ceramic precursors, and drug carriers. In order to satisfy the requirements for each application as well as to find alternative applications, the preparation of LDHs with the desired composition and particle morphology and post-synthetic modification by the host-guest interactions have been examined. In addition, the hybridization of LDHs with various functional particles has been reported to design materials of modified, improved, and multiple functions. In the present article, the preparation, the heterostructure and the application of hybrids containing LDHs as the main component are overviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt00292jDOI Listing

Publication Analysis

Top Keywords

layered double
8
double hydroxides
8
functional particles
8
hybridization layered
4
hydroxides functional
4
particles layered
4
ldhs
4
hydroxides ldhs
4
ldhs class
4
class materials
4

Similar Publications

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

A Chain Entanglement Gelled SnO₂ Electron Transport Layer for Enhanced Perovskite Solar Cell Performance and Effective Lead Capture.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.

SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.

View Article and Find Full Text PDF

The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

The construction of a double-layer colon-targeted delivery system based on zein-shellac complex and gelatin-isomaltooligosaccharide Maillard product: In vitro and in vivo evaluation.

Food Res Int

January 2025

College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China. Electronic address:

In this study, we developed a double-layer colon-targeted microcapsule. It used the Maillard product of gelatin-isomaltooligosaccharide (GI180) and zein-shellac complex (ZS) as bio-based materials, plant extracts (MPL) and Lactobacillus plantarum JJBYG12 (JJBYG12) were co-encapsulated, endowing them with strong resistance to harsh environments and precise intestinal adhesion and targeting ability. The research results indicated that ZS11 exhibits hydrogen bonding and electrostatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!