AI Article Synopsis

  • The paper discusses how the band inversion in 3D topological materials connects to the parity anomaly seen in 2D massless Dirac fermions.
  • It presents findings from experiments on the topological insulator (Hg,Mn)Te, highlighting a specific behavior in the quantized Hall resistance that ties back to spectral asymmetry.
  • The observed phenomenon may occur in other topological insulators where a single Dirac surface state governs transport.

Article Abstract

The band inversion of topological materials in three spatial dimensions is intimately connected to the parity anomaly of 2D massless Dirac fermions, known from quantum field theory. At finite magnetic fields, the parity anomaly reveals itself as a non-zero spectral asymmetry, i.e., an imbalance between the number of conduction and valence band Landau levels, due to the unpaired zero Landau level. This work reports the realization of this 2D Dirac physics at a single surface of the 3D topological insulator (Hg,Mn)Te. An unconventional re-entrant sequence of quantized Hall plateaus in the measured Hall resistance can be directly related to the occurrence of spectral asymmetry in a single topological surface state. The effect should be observable in any topological insulator where the transport is dominated by a single Dirac surface state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109608PMC
http://dx.doi.org/10.1002/advs.202307447DOI Listing

Publication Analysis

Top Keywords

spectral asymmetry
12
topological insulator
12
parity anomaly
8
topological
5
asymmetry induces
4
induces re-entrant
4
re-entrant quantum
4
quantum hall
4
hall topological
4
insulator band
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!