Current cancer treatments target tumor cells; however, the tumor microenvironment (TME) induces therapeutic resistance, tumor development and metastasis, thus rendering these treatments ineffective. Research on the TME has therefore concentrated on nonmalignant cells. Cancer-associated fibroblasts (CAFs) are a major TME component, which contribute to cancer progression due to their diverse origins, phenotypes and functions, including cancer cell invasion and migration, extracellular matrix remodeling, tumor metabolism modulation and therapeutic resistance. Standard cancer treatment typically exacerbates the senescence-associated secretory phenotype (SASP) of senescent cancer cells and nonmalignant cells that actively leak proinflammatory signals in the TME. Therapy-induced senescence may impair cancer cell activity and compromise treatment responsiveness. CAFs and SASP are well-studied in the formation and progression of cancer. The present review discusses the current data on CAF senescence caused by anticancer treatment and assesses how senescence-like CAFs affect tumor formation. The development of senolytic medication for aging stromal cells is also highlighted. Combining cancer therapies with senolytics may boost therapeutic effects and provide novel possibilities for research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928991 | PMC |
http://dx.doi.org/10.3892/etm.2024.12438 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.
The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies.
View Article and Find Full Text PDFFront Immunol
January 2025
BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia.
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer.
View Article and Find Full Text PDFFront Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.
Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!