Deep learning has significantly advanced text-to-speech (TTS) systems. These neural network-based systems have enhanced speech synthesis quality and are increasingly vital in applications like human-computer interaction. However, conventional TTS models still face challenges, as the synthesized speeches often lack naturalness and expressiveness. Additionally, the slow inference speed, reflecting low efficiency, contributes to the reduced voice quality. This paper introduces SynthRhythm-TTS (SR-TTS), an optimized Transformer-based structure designed to enhance synthesized speech. SR-TTS not only improves phonological quality and naturalness but also accelerates the speech generation process, thereby increasing inference efficiency. SR-TTS contains an encoder, a rhythm coordinator, and a decoder. In particular, a pre-duration predictor within the cadence coordinator and a self-attention-based feature predictor work together to enhance the naturalness and articulatory accuracy of speech. In addition, the introduction of causal convolution enhances the consistency of the time series. The cross-linguistic capability of SR-TTS is validated by training it on both English and Chinese corpora. Human evaluation shows that SR-TTS outperforms existing techniques in terms of speech quality and naturalness of expression. This technology is particularly suitable for applications that require high-quality natural speech, such as intelligent assistants, speech synthesized podcasts, and human-computer interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927791 | PMC |
http://dx.doi.org/10.3389/fnbot.2024.1322312 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!