Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.202300214 | DOI Listing |
Sci Adv
December 2024
McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary T2N 4Z6, Canada.
Mechanical unloading causes bone loss, but it remains unclear whether disuse-induced changes to bone microstructure are permanent or can be recovered upon reloading. We examined bone loss and recovery in 17 astronauts using time-lapsed high-resolution peripheral quantitative computed tomography and biochemical markers to determine whether disuse-induced changes are permanent. During 6 months in microgravity, resorption was threefold higher than formation.
View Article and Find Full Text PDFPLoS One
December 2024
Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
Rehabilitation from musculoskeletal injuries (MSKI) complicate healing dynamics typically by sustained disuse of bone and muscles. Microgravity naturally allows limb disuse and thus an effective model to understand MSKI. The current study examined epigenetic changes in a segmental bone defect (SBD) mouse model in a prolonged unloading condition after spaceflight (FLT).
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Myology Lab, Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia.
In most mammals, postural soleus muscles are involved in the maintenance of the stability of the body in the gravitational field of Earth. It is well established that immediately after a laboratory rat is exposed to conditions of weightlessness (parabolic flight) or simulated microgravity (hindlimb suspension/unloading), a sharp decrease in soleus muscle electrical activity occurs. However, starting from the 3rd day of mechanical unloading, soleus muscle electrical activity begins to increase and reaches baseline levels approximately by the 14th day of hindlimb suspension.
View Article and Find Full Text PDFBull Exp Biol Med
November 2024
Laboratory of General Pathology of Cardiorespiratory System, Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
J Orthop Surg Res
September 2024
Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Background: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism.
Methods: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!