The peach ( L.) is one of the most important stone-fruit crops worldwide. Nevertheless, successful peach fruit production is seriously reduced by losses due to the causal agent of brown rot. Chitosan has a broad spectrum of antimicrobial properties and may also act as an elicitor that activate defense responses in plants. As little is known about the elicitation potential of chitosan in peach fruits and its impact at their transcriptional-level profiles, the aim of this study was to uncover using RNA-seq the induced responses regulated by the action of chitosan in fruit-chitosan- interaction. Samples were obtained from fruits treated with chitosan or inoculated with , as well from fruits pre-treated with chitosan and thereafter inoculated with the fungus. Chitosan was found to delay the postharvest decay of fruits, and expression profiles showed that its defense-priming effects were mainly evident after the pathogen challenge, driven particularly by modulations of differentially expressed genes (DEGs) related to cell-wall modifications, pathogen perception, and signal transduction, preventing the spread of fungus. In contrast, as the compatible interaction of fruits with was challenged, a shift towards defense responses was triggered with a delay, which was insufficient to limit fungal expansion, whereas DEGs involved in particular processes have facilitated early pathogen colonization. Physiological indicators of peach fruits were also measured. Additionally, expression profiles of particular genes highlight the direct antimicrobial activity of chitosan against the fungus. Overall, the results clarify the possible mechanisms of chitosan-mediated tolerance to and set new foundations for the potential employment of chitosan in the control of brown rot in peaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933875PMC
http://dx.doi.org/10.3390/plants13050567DOI Listing

Publication Analysis

Top Keywords

brown rot
8
chitosan
8
defense responses
8
peach fruits
8
chitosan inoculated
8
expression profiles
8
fruits
6
peach
5
global transcriptome
4
transcriptome analysis
4

Similar Publications

China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.

View Article and Find Full Text PDF

Hawthorn () is an important economic fruit and Chinese medicinal plant, which is widely distributed in the northern China. In early July 2024, a fruit rot disease was observed on the young fruits of hawthorn in a park of Shouguang, Shandong Province, China (36°53'42.16″N, 118°47'22.

View Article and Find Full Text PDF

Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).

View Article and Find Full Text PDF

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!