The Influence of a Microstructural Conformation of Oriented Floating Films of Semiconducting Polymers on Organic Device Performance.

Polymers (Basel)

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.

Published: March 2024

Extended π-conjugation with backbone-planarity-driven π-π stacking dominates charge transport in semiconducting polymers (SCPs). The roles of SCP film morphology and macromolecular conformation concerning the substrate in influencing charge transport and its impact on device performance have been a subject of extensive debate. Face-on SCPs promote out-of-plane charge transport primarily through π-π stacking, with conjugated polymeric chains assisting transport in connecting crystalline domains, whereas edge-on SCPs promote in-plane charge transport primarily through conjugation and π-π stacking. In this work, we fabricated three different types of devices, namely, organic field effect transistors, organic Schottky diodes, and organic bistable memristors, as representatives of planar and vertical devices. We demonstrate that a planar device, i.e., an organic field effect transistor, performs well in an edge-on conformation exhibiting a field-effect mobility of 0.12 cmVs and on/off ratio >10, whereas vertical devices, i.e., organic Schottky diodes and organic memristors, perform well in a face-on conformation, exhibiting exceptionally high on/off ratios of ~10 and 10, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933849PMC
http://dx.doi.org/10.3390/polym16050710DOI Listing

Publication Analysis

Top Keywords

charge transport
16
π-π stacking
12
semiconducting polymers
8
device performance
8
scps promote
8
devices organic
8
organic field
8
organic schottky
8
schottky diodes
8
diodes organic
8

Similar Publications

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.

Adv Sci (Weinh)

January 2025

Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.

Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!