A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silicon Hybrid EPDM Composite with High Thermal Protection Performance. | LitMetric

Silicon Hybrid EPDM Composite with High Thermal Protection Performance.

Polymers (Basel)

National Engineering Research Center for Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Published: March 2024

AI Article Synopsis

  • * Results indicate that both fumed silica and silica aerogel enhance the thermal insulation performance of EPDM composites, with silica aerogel showing better dispersion and lower thermal conductivity.
  • * The fumed silica composite demonstrated superior char residue formation during burn tests at high temperatures, achieving lower thermal conductivity and a reduced back temperature compared to the silica aerogel.

Article Abstract

The effects of octaphenylsilsesquioxane (OPS), fumed silica, and silica aerogel on the thermal insulation properties of ethylene propylene diene monomer (EPDM) rubber were studied. On this basis, two kinds of fillers with good performances were selected to study the thermal insulation of an EPDM full-formula system. The results show that the addition of fumed silica or silica aerogel had a positive effect on the thermal insulation performance of EPDM rubber and its composite. A 30 wt% silica aerogel can be well dispersed in the EPDM rubber system and with a lower thermal conductivity compared with fumed silica. EPDM composite with 23.4 wt% fumed silica can produce more char residues at 1000 °C than at 500 °C in a burn-through test and formed the compact and porous char at 1000 °C, which had a lowest thermal conductivity. EPDM composite with fumed silica cannot be burned through 1000 °C burning, and comparison with silica aerogel revealed that it achieved the lowest back temperature and had a temperature of 388 °C after 800 s.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933853PMC
http://dx.doi.org/10.3390/polym16050695DOI Listing

Publication Analysis

Top Keywords

fumed silica
20
silica aerogel
16
epdm composite
12
thermal insulation
12
epdm rubber
12
1000 °c
12
silica
9
silica silica
8
thermal conductivity
8
epdm
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: