This work investigates the potential to rely on the complex refractive index to correlate the chemical composition of polymers with their optical properties, including transmittance, reflectance and absorbance. The optical properties of polycarbonate slabs with various controlled concentrations of two dyes were initially measured and analyzed. The reflection and transmission measurements obtained were used to determine the corresponding complex refractive index over a wide range of wavelengths. Comparing it with that of a clear material provided the spectral deviation of the complex refractive index induced by the dye concentrations and resulted in assigning a spectral efficiency to both of them. A modification function of the complex refractive index was established based on this spectral efficiency, which acts as a spectral fingerprint related to each dye. Finally, two samples doped with the two dyes mixed were studied to assess the model's capabilities. On the one hand, based on the measured transmittance, the dye concentrations were determined within a deviation below 8% in comparison with the values provided by the manufacturer. On the other hand, when the dye concentrations were known, the model reproduced the optical properties with good accuracy beyond the limitations of the experimental setup. The model's effectiveness in correlating the chemical composition of polymer with its optical properties through the complex refractive index makes it a valuable asset in analyzing and formulating plastics with intended optical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933932 | PMC |
http://dx.doi.org/10.3390/polym16050660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!