Water scarcity and contamination have emerged as critical global challenges, requiring the development of effective and sustainable solutions for the treatment of contaminated water. Recently, functionalized polymer biomaterials have garnered significant interest because of their potential for a wide range of water treatment applications. Accordingly, this paper highlights the design of a new adsorbent material based on a cellulosic nonwoven textile grafted with two extracted biopolymers. The layer-by-layer grafting technique was used for the polyelectrolyte multi-layer (PEM) biosorbent production. Firstly, we extracted a Suaeda fruticosa polysaccharide (SFP) and confirmed its pectin-like polysaccharide structure via SEC, NMR spectroscopy, and chemical composition analyses. Afterward, the grafting was designed via an alternating multi-deposition of layers of SFP polymer and carrageenan crosslinked with 1,2,3,4-butanetetracarboxylic acid (BTCA). FT-IR and SEM were used to characterize the chemical and morphological characteristics of the designed material. Chemical grafting via polyesterification reactions of the PEM biosorbent was confirmed through FT-IR analysis. SEM revealed the total filling of material microspaces with layers of grafted biopolymers and a rougher surface morphology. The assessment of the swelling behavior revealed a significant increase in the hydrophilicity of the produced adsorbent system, a required property for efficient sorption potential. The evaluation of the adsorption capabilities using the methylene blue (MB) as cationic dye was conducted in various experimental settings, changing factors such as the pH, time, temperature, and initial concentration of dye. For the untreated and grafted materials, the greatest adsorbed amounts of MB were 130.6 mg/g and 802.6 mg/g, respectively (pH = 4, T = 22 C, duration = 120 min, and dye concentration = 600 mg/L). The high adsorption performance, compared to other reported materials, was due to the presence of a large number of hydroxyl, sulfonate, and carboxylic functional groups in the biosorbent polymeric system. The adsorption process fitted well with the pseudo-first-order kinetic model and Langmuir/Temkin adsorption isotherms. This newly developed multi-layered biosorbent shows promise as an excellent adsorption resultant and cheap-cost/easy preparation alternative for treating industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934096 | PMC |
http://dx.doi.org/10.3390/polym16050585 | DOI Listing |
Molecules
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Int J Biol Macromol
December 2024
Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan. Electronic address:
Bacterial infections in wounds, especially in patients with chronic conditions like diabetic wounds, pose significant treatment challenges. Addressing the susceptibility to infection is crucial, and the development of functional dressings to prevent bacterial invasion has proven a promising strategy. Cellulose nanocrystals (CNCs), derived from bio-resources and functioning as nanoparticles (NPs), were modified with poly[2-(tert-butylamino) ethyl methacrylate] (PTA) through atom transfer radical polymerization (ATRP) to create CNCs-graft-PTA NPs (CNPs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Provincial Engineering Research Center for Automotive Highly Functional Fiber Products, Hefei, Anhui 230036, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!