High-performance engineering thermoplastics offer lightweight and excellent mechanical performance in a wide temperature range. Their composites with carbon nanotubes are expected to enhance mechanical performance, while providing thermal and electrical conductivity. These are interesting attributes that may endow additional functionalities to the nanocomposites. The present work investigates the optimal conditions to prepare polyether ether ketone (PEEK)/multi-walled carbon nanotube (MWCNT) nanocomposites, minimizing the MWCNT agglomerate size while maximizing the nanocomposite electrical conductivity. The aim is to achieve PEEK/MWCNT nanocomposites that are suitable for melt-spinning of electrically conductive multifilament's. Nanocomposites were prepared with compositions ranging from 0.5 to 7 wt.% MWCNT, showing an electrical percolation threshold between 1 and 2 wt.% MWCNT (10-10 S/cm) and a rheological percolation in the same range (1 to 2 wt.% MWCNT), confirming the formation of an MWCNT network in the nanocomposite. Considering the large drop in electrical conductivity typically observed during melt-spinning and the drawing of filaments, the composition PEEK/5 wt.% MWCNT was selected for further investigation. The effect of the melt extrusion parameters, namely screw speed, temperature, and throughput, was studied by evaluating the morphology of MWCNT agglomerates, the nanocomposite rheology, and electrical properties. It was observed that the combination of the higher values of screw speed and temperature profile leads to the smaller number of MWCNT agglomerates with smaller size, albeit at a slightly lower electrical conductivity. Generally, all processing conditions tested yielded nanocomposites with electrical conductivity in the range of 0.50-0.85 S/cm. The nanocomposite processed at higher temperature and screw speed presented the lowest value of elastic modulus, perhaps owing to higher matrix degradation and lower connectivity between the agglomerates. From all the process parameters studied, the screw speed was identified to have the higher impact on nanocomposite properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934642PMC
http://dx.doi.org/10.3390/polym16050583DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
24
wt% mwcnt
16
screw speed
16
mwcnt
9
peek/mwcnt nanocomposites
8
electrical
8
mechanical performance
8
speed temperature
8
mwcnt agglomerates
8
nanocomposites
6

Similar Publications

[Body composition assessment methods in clinical practice].

Orv Hetil

January 2025

1 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest, Korányi S. u. 2/A, 1083 Magyarország.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Review of upper extremity passive joint impedance identification in people with Duchenne Muscular Dystrophy.

J Neuroeng Rehabil

January 2025

Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.

Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!