As the potential of directed acyclic graph (DAG)-based distributed ledgers in IoT systems unfolds, a need arises to understand their intricate dynamics in real-world scenarios. It is well known that discrete event simulations can provide high-fidelity evaluations of protocols. However, there is a lack of public discrete event simulators capable of assessing DAG-based distributed ledgers. In this paper, a discrete-event-based distributed ledger simulator is introduced, with which we investigate a custom Python-based implementation of IOTA's Tangle DAG protocol. The study reveals the dynamics of Tangle (particularly Poisson processes in transaction dynamics), the efficiency and intricacies of the random walk in Tangle, and the quantitative assessment of node convergence. Furthermore, the research underscores the significance of weight updates without depth limitations and provides insights into the role, challenges, and implications of the coordinator/validator in DAG architectures. The results are striking, and although the findings are reported only for Tangle, they demonstrate the need for adaptable and versatile discrete event simulators for DAG architectures and tip selection methodologies in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934231PMC
http://dx.doi.org/10.3390/s24051583DOI Listing

Publication Analysis

Top Keywords

dag-based distributed
12
discrete event
12
distributed ledger
8
distributed ledgers
8
event simulators
8
dag architectures
8
verification dag-based
4
distributed
4
ledger technologies
4
technologies discrete-event
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!