Distributed optical fiber acoustic sensing (DAS) is promising for long-distance intrusion-anomaly detection tasks. However, realistic settings suffer from high-intensity interference noise, compromising the detection performance of DAS systems. To address this issue, we propose STNet, an intrusion detection network based on the Stockwell transform (S-transform), for DAS systems, considering the advantages of the S-transform in terms of noise resistance and ability to detect disturbances. Specifically, the signal detected by a DAS system is divided into space-time data matrices using a sliding window. Subsequently, the S-transform extracts the time-frequency features channel by channel. The extracted features are combined into a multi-channel time-frequency feature matrix and presented to STNet. Finally, a non-maximum suppression algorithm (NMS), suitable for locating intrusions, is used for the post-processing of the detection results. To evaluate the effectiveness of the proposed method, experiments were conducted using a realistic high-speed railway environment with high-intensity noise. The experimental results validated the satisfactory performance of the proposed method. Thus, the proposed method offers an effective solution for achieving high intrusion detection rates and low false alarm rates in complex environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934202 | PMC |
http://dx.doi.org/10.3390/s24051570 | DOI Listing |
Sci Rep
January 2025
Department of Electrical and Electronics Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India.
The increasing prevalence of network connections is driving a continuous surge in the requirement for network security and safeguarding against cyberattacks. This has triggered the need to develop and implement intrusion detection systems (IDS), one of the key components of network perimeter aimed at thwarting and alleviating the issues presented by network invaders. Over time, intrusion detection systems have been instrumental in identifying network breaches and deviations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bionano Technology, Gachon University, Seongnam, Korea, Republic of (South).
Background: Electroencephalography (EEG) is a non-intrusive technique that provides comprehensive insights into the electrical activities of the brain's cerebral cortex. The brain signals obtained from EEGs can be used as a neuropsychological biomarker to detect different stages of Alzheimer's disease (AD) through quantitative EEG (qEEG) analysis. This paper investigates the difference in the abnormalities of resting state EEG (rEEG) signals between eyes-open (EOR) and eyes-closed (ECR) in AD by analyzing 19- scalp electrode EEG signals and making a comparison with healthy controls (HC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, Kebri Dehar University, 250, Somali, Ethiopia.
In recent times, there has been rapid growth of technologies that have enabled smart infrastructures-IoT-powered smart grids, cities, and healthcare systems. But these resource-constrained IoT devices cannot be protected by existing security mechanisms against emerging cyber threats. The aim of the paper is to present an improved security for smart healthcare IoT systems by developing an architecture for IADCL.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
The rapid integration of Internet of Things (IoT) systems in various sectors has escalated security risks due to sophisticated multilayer attacks that compromise multiple security layers and lead to significant data loss, personal information theft, financial losses etc. Existing research on multilayer IoT attacks exhibits gaps in real-world applicability, due to reliance on outdated datasets with a limited focus on adaptive, dynamic approaches to address multilayer vulnerabilities. Additionally, the complete reliance on automated processes without integrating human expertise in feature selection and weighting processes may affect the reliability of detection models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!