In smart cities, bicycle-sharing systems have become an essential component of the transportation services available in major urban centers around the globe. Due to environmental sustainability, research on the power-assisted control of electric bikes has attracted much attention. Recently, fuzzy logic controllers (FLCs) have been successfully applied to such systems. However, most existing FLC approaches have a fixed fuzzy rule base and cannot adapt to environmental changes, such as different riders and roads. In this paper, a modified FLC, named self-tuning FLC (STFLC), is proposed for power-assisted bicycles. In addition to a typical FLC, the presented scheme adds a rule-tuning module to dynamically adjust the rule base during fuzzy inference processes. Simulation and experimental results indicate that the presented self-tuning module leads to comfortable and safe riding as compared with other approaches. The technique established in this paper is thought to have the potential for broader application in public bicycle-sharing systems utilized by a diverse range of riders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935322 | PMC |
http://dx.doi.org/10.3390/s24051552 | DOI Listing |
Food Res Int
February 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards.
View Article and Find Full Text PDFSci Rep
January 2025
Amity Institute of Environmental Sciences (AIES), Amity University Uttar Pradesh (AUUP), Sector-125, Gautam Budh Nagar, Noida, 201313, India.
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFISA Trans
January 2025
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, Hunan, China. Electronic address:
Approximation-free control effectively addresses uncertainty and disturbances without relying on approximation techniques such as fuzzy logic systems (FLS) and neural networks (NNs). However, singularity problems-where signals exceed preset boundaries under dynamic operating conditions-remain a challenge. This paper proposes an improved approximation-free control (I-AFC) method for the multi-agent system, which introduces a novel singularity compensator, providing a low-complexity design with exceptional adaptability while reducing the risk of singularity issues under changing working conditions (random initial values, system parameter variations, and changes in topology graph and followers' dynamics).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh.
Chemical industries are highly vulnerable to accidental events or terrorist attacks due to their processing, storage, and transportation of explosive, flammable, and toxic materials. Major industrial risks include fire, explosion, and toxic chemical release. An effective risk evaluation system is essential to prevent accidents or terrorist attacks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Management Information Systems, Faculty of Economics and Administration, King Abdulaziz University, Jeddah, Saudi Arabia.
In the current era, IoT-based healthcare solutions play a pivotal role in transforming the healthcare landscape by addressing key challenges and significantly enhancing the quality, accessibility, and efficiency of medical services, particularly for individuals in remote areas. This paper introduces innovative operations on fractional fuzzy sets (FFS), specifically the Hamacher sum and product, and establishes corresponding operational laws. Building upon these foundations, we propose novel aggregation operators (AoPs) leveraging Hamacher norms and rigorously analyze their properties within the FFS framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!