This study aims to illustrate the design, fabrication, and optimisation of an ultrasonic welding (UW) machine to join copper wires with non-woven PVC textiles as smart textiles. The study explicitly evaluates UW parameters' impact on heat generation, joint strength, and electrical properties, with a comprehensive understanding of the process dynamics and developing a predictive model applicable to smart textiles. The methodological approach involved designing and manufacturing an ultrasonic piezoelectric transducer using ABAQUS finite element analyses (FEA) software and constructing a UW machine for the current purpose. The full factorial design (FFD) approach was employed in experiments to systematically assess the influence of welding time, welding pressure, and copper wire diameter on the produced joints. Experimental data were meticulously collected, and a backpropagation neural network (BPNN) model was constructed based on the analysis of these results. The results of the experimental investigation provided valuable insights into the UW process, elucidating the intricate relationship between welding parameters and heat generation, joint strength, and post-welding electrical properties of the copper wires. This dataset served as the basis for developing a neural network model, showcasing a high level of accuracy in predicting welding outcomes compared to the FFD model. The neural network model provides a valuable tool for controlling and optimising the UW process in the realm of smart textile production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934952 | PMC |
http://dx.doi.org/10.3390/s24051488 | DOI Listing |
Clin Implant Dent Relat Res
February 2025
SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.
Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.
Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.
Eur Heart J Digit Health
January 2025
Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, No. 88 West Taishan Road, Zhuzhou 412007, Hunan, China.
Aims: The electrocardiogram (ECG) is the primary method for diagnosing atrial fibrillation (AF), but interpreting ECGs can be time-consuming and labour-intensive, which deserves more exploration.
Methods And Results: We collected ECG data from 6590 patients as YY2023, classified as Normal, AF, and Other. Convolutional Neural Network (CNN), bidirectional Long Short-Term Memory (BiLSTM), and Attention construct the AF recognition model CNN BiLSTM Attention-Atrial Fibrillation (CLA-AF).
Eur Heart J Digit Health
January 2025
Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, 401 East River Parkway, Minneapolis, MN, USA.
Aims: Many studies have utilized data sources such as clinical variables, polygenic risk scores, electrocardiogram (ECG), and plasma proteins to predict the risk of atrial fibrillation (AF). However, few studies have integrated all four sources from a single study to comprehensively assess AF prediction.
Methods And Results: We included 8374 (Visit 3, 1993-95) and 3730 (Visit 5, 2011-13) participants from the Atherosclerosis Risk in Communities Study to predict incident AF and prevalent (but covert) AF.
Health Inf Sci Syst
December 2025
School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.
Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.
Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!