Wearable devices in sports have been used at the professional and higher collegiate levels, but not much research has been conducted at lower collegiate division levels. The objective of this retrospective study was to gather big data using the Catapult wearable technology, develop an algorithm for musculoskeletal modeling, and longitudinally determine the workloads of male college soccer (football) athletes at the Division III (DIII) level over the course of a 12-week season. The results showed that over the course of a season, (1) the average match workload (432 ± 47.7) was 1.5× greater than the average training workload (252.9 ± 23.3) for all positions, (2) the forward position showed the lowest workloads throughout the season, and (3) the highest mean workload was in week 8 (370.1 ± 177.2), while the lowest was in week 4 (219.1 ± 26.4). These results provide the impetus to enable the interoperability of data gathered from wearable devices into data management systems for optimizing performance and health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934666 | PMC |
http://dx.doi.org/10.3390/s24051463 | DOI Listing |
BMC Neurol
January 2025
Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea.
Background: This study evaluates the comprehensive impact of different exercise interventions on the quality of life in stroke patients through network meta-analysis, aiming to provide scientific evidence for developing more effective rehabilitation programs and improving patients' physical, psychological, and social functions.
Methods: This systematic review, registered in PROSPERO (CRD42024541517) and following PRISMA guidelines, searched multiple databases (PubMed, Web of Science, EMbase, Cochrane, Ebsco) until November 1, 2024. Studies were selected based on the PICOS criteria, including RCTs on stroke and exercise.
ACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFSci Adv
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.
View Article and Find Full Text PDFBiostat Epidemiol
October 2024
Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, US.
Wearable devices enable the continuous monitoring of physical activity (PA) but generate complex functional data with poorly characterized errors. Most work on functional data views the data as smooth, latent curves obtained at discrete time intervals with some random noise with mean zero and constant variance. Viewing this noise as homoscedastic and independent ignores potential serial correlations.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Research Centre Healthy and Sustainable Living, Research group Lifestyle and Health, Utrecht University of Applied Sciences, Utrecht, The Netherlands.
Objective: To evaluate psychometrics of wearable devices measuring physical activity (PA) in ambulant children with gait abnormalities due to neuromuscular conditions.
Data Sources: We searched PubMed, Embase, PsycINFO, CINAHL, and SPORTDiscus in March 2023.
Study Selection: We included studies if (1) participants were ambulatory children (2-19y) with gait abnormalities, (2) reliability and validity were analyzed, and (3) peer-reviewed studies in the English language and full-text were available.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!