In this paper, we introduce a novel panoptic segmentation method called the Mask-Pyramid Network. Existing Mask RCNN-based methods first generate a large number of box proposals and then filter them at each feature level, which requires a lot of computational resources, while most of the box proposals are suppressed and discarded in the Non-Maximum Suppression process. Additionally, for panoptic segmentation, it is a problem to properly fuse the semantic segmentation results with the Mask RCNN-produced instance segmentation results. To address these issues, we propose a new mask pyramid mechanism to distinguish objects and generate much fewer proposals by referring to existing segmented masks, so as to reduce computing resource consumption. The Mask-Pyramid Network generates object proposals and predicts masks from larger to smaller sizes. It records the pixel area occupied by the larger object masks, and then only generates proposals on the unoccupied areas. Each object mask is represented as a H × W × 1 logit, which fits well in format with the semantic segmentation logits. By applying SoftMax to the concatenated semantic and instance segmentation logits, it is easy and natural to fuse both segmentation results. We empirically demonstrate that the proposed Mask-Pyramid Network achieves comparable accuracy performance on the Cityscapes and COCO datasets. Furthermore, we demonstrate the computational efficiency of the proposed method and obtain competitive results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935111 | PMC |
http://dx.doi.org/10.3390/s24051411 | DOI Listing |
Sensors (Basel)
February 2024
School of Communication, The Hang Seng University of Hong Kong, Hong Kong.
In this paper, we introduce a novel panoptic segmentation method called the Mask-Pyramid Network. Existing Mask RCNN-based methods first generate a large number of box proposals and then filter them at each feature level, which requires a lot of computational resources, while most of the box proposals are suppressed and discarded in the Non-Maximum Suppression process. Additionally, for panoptic segmentation, it is a problem to properly fuse the semantic segmentation results with the Mask RCNN-produced instance segmentation results.
View Article and Find Full Text PDFDiagnostics (Basel)
September 2021
School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Kanagawa, Japan.
In this study, a novel combination of hybrid generative adversarial networks (GANs) comprising cycle-consistent GAN, pix2pix, and (mask pyramid network) MPN (CGpM-metal artifact reduction [MAR]), was developed using projection data to reduce metal artifacts and the radiation dose during digital tomosynthesis. The CGpM-MAR algorithm was compared with the conventional filtered back projection (FBP) without MAR, FBP with MAR, and convolutional neural network MAR. The MAR rates were compared using the artifact index (AI) and Gumbel distribution of the largest variation analysis using a prosthesis phantom at various radiation doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!