Wi-AM: Enabling Cross-Domain Gesture Recognition with Commodity Wi-Fi.

Sensors (Basel)

School of Information Science and Technology, Northwest University, Xi'an 710127, China.

Published: February 2024

RF-based gesture recognition systems outperform computer vision-based systems in terms of user privacy. The integration of Wi-Fi sensing and deep learning has opened new application areas for intelligent multimedia technology. Although promising, existing systems have multiple limitations: (1) they only work well in a fixed domain; (2) when working in a new domain, they require the recollection of a large amount of data. These limitations either lead to a subpar cross-domain performance or require a huge amount of human effort, impeding their widespread adoption in practical scenarios. We propose Wi-AM, a privacy-preserving gesture recognition framework, to address the above limitations. Wi-AM can accurately recognize gestures in a new domain with only one sample. To remove irrelevant disturbances induced by interfering domain factors, we design a multi-domain adversarial scheme to reduce the differences in data distribution between different domains and extract the maximum amount of transferable features related to gestures. Moreover, to quickly adapt to an unseen domain with only a few samples, Wi-AM adopts a meta-learning framework to fine-tune the trained model into a new domain with a one-sample-per-gesture manner while achieving an accurate cross-domain performance. Extensive experiments in a real-world dataset demonstrate that Wi-AM can recognize gestures in an unseen domain with average accuracy of 82.13% and 86.76% for 1 and 3 data samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934180PMC
http://dx.doi.org/10.3390/s24051354DOI Listing

Publication Analysis

Top Keywords

gesture recognition
12
cross-domain performance
8
recognize gestures
8
unseen domain
8
domain
7
wi-am
5
wi-am enabling
4
enabling cross-domain
4
cross-domain gesture
4
recognition commodity
4

Similar Publications

Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition.

View Article and Find Full Text PDF

In the field of rehabilitation, although deep learning have been widely used in multitype gesture recognition via surface electromyography (sEMG), their higher algorithmic complexity often leads to low computationally inefficient, which compromise their practicality. To achieve more efficient multitype recognition, We propose the Residual-Inception-Efficient (RIE) model, which integrates Inception and efficient channel attention (ECA). The Inception, which is a multiscale fusion convolutional module, is adopted to enhance the ability to extract sEMG features.

View Article and Find Full Text PDF

Flexible and Stable GaN Piezoelectric Sensor for Motion Monitoring and Fall Warning.

Nanomaterials (Basel)

December 2024

Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere.

View Article and Find Full Text PDF

Surface electromyography (sEMG) signals reflect the local electrical activity of muscle fibers and the synergistic action of the overall muscle group, making them useful for gesture control of myoelectric manipulators. In recent years, deep learning methods have increasingly been applied to sEMG gesture recognition due to their powerful automatic feature extraction capabilities. sEMG signals contain rich local details and global patterns, but single-scale convolutional networks are limited in their ability to capture both comprehensively, which restricts model performance.

View Article and Find Full Text PDF

Research on Multimodal Control Method for Prosthetic Hands Based on Visuo-Tactile and Arm Motion Measurement.

Biomimetics (Basel)

December 2024

Institute of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

The realization of hand function reengineering using a manipulator is a research hotspot in the field of robotics. In this paper, we propose a multimodal perception and control method for a robotic hand to assist the disabled. The movement of the human hand can be divided into two parts: the coordination of the posture of the fingers, and the coordination of the timing of grasping and releasing objects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!