Polybenzimidazoles (PBIs) are recognized for their remarkable thermal stability due to their unique molecular structure, which is characterized by aromaticity and rigidity. Despite their remarkable thermal attributes, their tensile properties limit their application. To improve the mechanical performance of PBIs, we made a vital modification to their molecular backbone to improve their structural flexibility. Non--conjugated components were introduced into PBIs by grafting meta-polyamide (MA) and para-polyamide (PA) onto PBI backbones to form the copolymers PBI--MA and PBI--PA. The results indicated that the cooperation between MA and PA significantly enhanced mechanical strain and overall toughness. Furthermore, the appropriate incorporation of aromatic polyamide components (20 mol% for MA and 15% for PA) improved thermal degradation temperatures by more than 30 °C. By investigating the copolymerization of PBIs with MA and PA, we unraveled the intricate relationships between composition, molecular structure, and material performance. These findings advance copolymer design strategies and deepen the understanding of polymer materials, offering tailored solutions that address thermal and mechanical demands across applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934712 | PMC |
http://dx.doi.org/10.3390/molecules29051058 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain.
The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.
Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!