, a bacterium found on human skin, produces toxins and various virulence factors that can lead to skin infections such as atopic dermatitis. These toxins and virulence factors are carried in membrane vesicles (MVs), composed of the bacterium's own cell membranes, and are expected to reach host target cells in a concentrated form, inducing inflammation. This study investigated the effects of two polyphenols, (-)-epigallocatechin gallate (EGCG) and nobiletin (NOL), on the expression of virulence factors and the inflammation induced by MVs. The study found that EGCG alone decreased the production of Staphylococcal Enterotoxin A (SEA), while both EGCG and NOL reduced biofilm formation and the expression of virulence factor-related genes. When was cultured in a broth supplemented with these polyphenols, the resulting MVs showed a reduction in SEA content and several cargo proteins. These MVs also exhibited decreased levels of inflammation-related gene expression in immortalized human keratinocytes. These results suggest that EGCG and NOL are expected to inhibit inflammation in the skin by altering the properties of MVs derived from .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931263 | PMC |
http://dx.doi.org/10.3390/cells13050387 | DOI Listing |
Arch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study first established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!