Familial dilated cardiomyopathy (DCM) is among the leading indications for heart transplantation. DCM alters the transcriptomic profile. The alteration or activation/silencing of physiologically operating transcripts may explain the onset and progression of this pathological state. The mediator complex (MED) plays a fundamental role in the transcription process. The aim of this study is to investigate the MED subunits, which are altered in DCM, to identify target crossroads genes. RNA sequencing allowed us to identify specific MED subunits that are altered during familial DCM, transforming into human myocardial samples. N = 13 MED subunits were upregulated and n = 7 downregulated. MED9 alone was significantly reduced in patients compared to healthy subjects (HS) (FC = -1.257; < 0.05). Interestingly, we found a short MED9 isoform (MED9s) (ENSG00000141026.6), which was upregulated when compared to the full-transcript isoform (MED9f). Motif identification analysis yielded several significant matches ( < 0.05), such as GATA4, which is downregulated in CHD. Moreover, although the protein-protein interaction network showed FOG2/ZFPM2, FOS and ID2 proteins to be the key interacting partners of GATA4, only FOG2/ZFPM2 overexpression showed an interaction score of "high confidence" ≥ 0.84. A significant change in the MED was observed during HF. For the first time, the MED9 subunit was significantly reduced between familial DCM and HS ( < 0.05), showing an increased MED9s isoform in DCM patients with respect to its full-length transcript. MED9 and GATA4 shared the same sequence motif and were involved in a network with FOG2/ZFPM2, FOS, and ID2, proteins already implicated in cardiac development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931922PMC
http://dx.doi.org/10.3390/ijms25053057DOI Listing

Publication Analysis

Top Keywords

med subunits
12
familial dilated
8
dilated cardiomyopathy
8
subunits altered
8
familial dcm
8
network fog2/zfpm2
8
fog2/zfpm2 fos
8
fos id2
8
id2 proteins
8
dcm
6

Similar Publications

An updated systematic review about various effects of microplastics on cancer: A pharmacological and in-silico based analysis.

Mol Aspects Med

January 2025

Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:

Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis.

View Article and Find Full Text PDF

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!