The zebrafish model has emerged as a reference tool for phenotypic drug screening. An increasing number of molecules have been brought from bench to bedside thanks to zebrafish-based assays over the last decade. The high homology between the zebrafish and the human genomes facilitates the generation of zebrafish lines carrying loss-of-function mutations in disease-relevant genes; nonetheless, even using this alternative model, the establishment of isogenic mutant lines requires a long generation time and an elevated number of animals. In this study, we developed a zebrafish-based high-throughput platform for the generation of F0 knock-out (KO) models and the screening of neuroactive compounds. We show that the simultaneous inactivation of a reporter gene () and a second gene of interest allows the phenotypic selection of F0 somatic mutants (crispants) carrying the highest rates of mutations in both loci. As a proof of principle, we targeted genes associated with neurodevelopmental disorders and we efficiently generated de facto F0 mutants in seven genes involved in childhood epilepsy. We employed a high-throughput multiparametric behavioral analysis to characterize the response of these KO models to an epileptogenic stimulus, making it possible to employ kinematic parameters to identify seizure-like events. The combination of these co-injection, screening and phenotyping methods allowed us to generate crispants recapitulating epilepsy features and to test the efficacy of compounds already during the first days post fertilization. Since the strategy can be applied to a wide range of indications, this study paves the ground for high-throughput drug discovery and promotes the use of zebrafish in personalized medicine and neurotoxicity assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931767 | PMC |
http://dx.doi.org/10.3390/ijms25052991 | DOI Listing |
J Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFIUBMB Life
January 2025
Senior Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.
View Article and Find Full Text PDFChem Biodivers
January 2025
GRT College of Education, Department of Pharmaceutical Chemistry, Tiruttani 631209, Tiruttani, INDIA.
Maternal Embryonic Leucine Zipper Kinase (MELK), a pivotal signaling protein, plays a crucial role in various physiological processes such as cell growth, survival, and differentiation. There is currently a growing interest in MELK as a promising therapeutic target for multiple cancers, including triple-negative breast cancer (TNBC). Exploring MELK as a target offers a prospective strategy to impede cancer progression and enhance the efficacy of conventional anticancer therapies.
View Article and Find Full Text PDFLiver Int
February 2025
Division of Bioinformatics and Statistics, The FDA's National Center for Toxicological Research, Jefferson, Arkansas, USA.
Background And Aims: Acute liver failure (ALF) is a serious condition, typically in individuals without prior liver disease. Drug-induced ALF (DIALF) constitutes a major portion of ALF cases. Our research aimed to identify potential genetic predispositions to DIALF.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!