In autosomal dominant polycystic kidney disease (ADPKD) with germline mutations in a or gene, innumerable cysts develop from tubules, and renal function deteriorates. Second-hit somatic mutations and renal tubular epithelial (RTE) cell death are crucial features of cyst initiation and disease progression. Here, we use established RTE lines and primary ADPKD cells with disease-associated mutations to investigate genomic instability and DNA damage responses. We found that ADPKD cells suffer severe chromosome breakage, aneuploidy, heightened susceptibility to DNA damage, and delayed checkpoint activation. Immunohistochemical analyses of human kidneys corroborated observations in cultured cells. DNA damage sensors (ATM/ATR) were activated but did not localize at nuclear sites of damaged DNA and did not properly activate downstream transducers (CHK1/CHK2). ADPKD cells also had the ability to transform, as they achieved high saturation density and formed colonies in soft agar. Our studies indicate that defective DNA damage repair pathways and the somatic mutagenesis they cause contribute fundamentally to the pathogenesis of ADPKD. Acquired mutations may alternatively confer proliferative advantages to the clonally expanded cell populations or lead to apoptosis. Further understanding of the molecular details of aberrant DNA damage responses in ADPKD is ongoing and holds promise for targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932443 | PMC |
http://dx.doi.org/10.3390/ijms25052936 | DOI Listing |
Cell Rep
December 2024
Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; AUTOTAC Bio, Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul 03077, Republic of Korea; Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea. Electronic address:
The human body reacts to tissue damage by generating damage-associated molecular patterns (DAMPs) that activate sterile immune responses. To date, little is known about how DAMPs are removed to avoid excessive immune responses. Here, we show that proteasomal dysfunction induces the release of mitochondrial DNA (mtDNA) as a DAMP that activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway and is subsequently degraded through the N-degron pathway.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Center of Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia.
To successfully apply the genome editing technology using the CRISPR/Cas9 system in the clinic, it is necessary to achieve a high efficiency of knock-in, which is insertion of a genetic construct into a given locus of the target cell genome. One of the approaches to increase the efficiency of knock-in is to modify donor DNA with the same Cas9 targeting sites (CTS) that are used to induce double-strand breaks (DSBs) in the cell genome (the double-cut donor method). Another approach is based on introducing truncated CTS (tCTS), including a PAM site and 16 proximal nucleotides, into the donor DNA.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Institute of Functional Genomics, Moscow State University, Moscow, 119991 Russia.
The CRISPR/Cas technology of targeted genome editing made it possible to carry out genetic engineering manipulations with eukaryotic genomes with a high efficiency. Targeted induction of site-specific DNA breaks is one of the key stages of the technology. The cell repairs the breaks via one of the two pathways, nonhomologous end joining (NHEJ) and homology-driven repair (HDR).
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Institute of Functional Genomics, Moscow State University, Moscow, 119991 Russia.
Modern genetic engineering technologies, such as base editing and prime editing (PE), have proven to provide the efficient and reliable genome editing tools that obviate the need for donor templates and double-strand breaks (DSBs) introduced in DNA. Relatively new, they quickly gained recognition for their accuracy, simplicity, and multiplexing capabilities. The review summarizes the new literature on the technologies and considers their architecture, methods to create editors, specificity, efficiency, and versatility.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
December 2024
Department of Oncology, Molecular Biotechnology Center "G. Tarone", University of Torino, Piazza Nizza 44, Torino, 10126, Italy.
Background: Malignant pleural mesothelioma (MPM) is a highly chemo-refractory and immune-evasive tumor that presents a median overall survival of 12-14 months when treated with chemotherapy and immunotherapy. New anti-tumor therapies as well as the concomitant reactivation of immune destruction are urgently needed to treat patients with this tumor. The aim of this work is to investigate the potential effect of ecteinascidin derivatives as lurbinectedin as new first-line treatment option in MPM, alone and in combination with immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!