Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the GMAW welding torch was controlled by a stepping motor to achieve a periodic swing. By controlling the swing speed, a micro-variable deposition path was obtained, which was called the micro-control deposition trajectory. The influence of the micro-control deposition trajectory on the arc characteristics, microstructure, and mechanical properties of 304 steel wire arc additive manufacturing was studied. The results showed that the micro-control deposition process was affected by the swing arc and the deposition trajectory and that the arc force was dispersed over the whole deposition layer, which effectively reduced the welding heat input. However, the arc centrifugal force increased with the increase in the swing speed, which easily caused instability of the arc and large spatter. Compared with common thin-walled deposition, the deposition width of micro-control thin-walled deposition components was increased. In addition, the swinging arc had a certain stirring effect on the molten pool, which was conducive to the escape of the molten pool gas and refinement of the microstructure. Below, the interface of the deposition layer, the microstructure of the common thin-walled deposition components, and the micro-control thin-walled deposition components were composed of lathy ferrite and austenite. Compared with the common deposition, when the swing speed increased to 800 °/s, the microstructure consisted of vermicular ferrite and austenite. The tensile strength and elongation of the micro-control thin-walled deposition components are higher than those of the common thin-walled deposition components. The tensile fracture mechanism of the common thin-walled deposition components and the micro-control thin-walled deposition components was the ductile fracture mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934546 | PMC |
http://dx.doi.org/10.3390/ma17051170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!