This article presents studies on the evaluation of the impact of surface modification of cotton, viscose, and polyester fabrics using three techniques (flocking, layer by layer, and screen printing) with materials with electrically conductive properties on their structural, biophysical, and conductive properties. Each tested fabric is characterized by specific biophysical properties. which can be disturbed by various modification methods, therefore, the following tests were carried out in the article: optical microscopy, micro-computed tomography, guarded perspiration heating plate, air permeability, sorption and electrical conductivity tester. The use of screen printing increased the thermal resistance of the cotton woven fabric by 119%, the polyester woven fabric by 156%, and the viscose fabric by 261%. The smallest changes in thermal resistance compared to unmodified textiles were observed in layer by layer modified fabrics and are as follows: -15% (cotton woven fabric), +77% (PES woven fabric), and +80% (viscose woven fabric).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934369 | PMC |
http://dx.doi.org/10.3390/ma17051169 | DOI Listing |
Sci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.
This study investigated a composite material combining epoxy with hybrid jute (J) and glass (G) fibers. A straightforward and effective fabrication method was employed, utilizing five layers with various reinforcement materials. To identify the optimal combination, a comprehensive series of tests were conducted using a range of characterization instruments, including Scanning Electron Microscopy (SEM), Universal Testing Machine (UTM), pendulum impact tester, density measurement, specific gravity evaluation, water absorption, and swelling thickness tests.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A new thin film was fabricated using FeO@SiO-polyoxometalate (POM) as the coating and it was coupled with a HPLC-UV to develop a method for the selective determination of ibuprofen, paracetamol and diclofenac (as the model analytes) from human plasma and urine samples. The prepared magnetic POM was coated on the pores and surface of cotton yarn to prepare the extracting device. The prepared sorbent was characterized by several techniques including: FT-IR, XRD, BET, SEM, and VSM analysis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan. Electronic address:
Bacterial infections in wounds, especially in patients with chronic conditions like diabetic wounds, pose significant treatment challenges. Addressing the susceptibility to infection is crucial, and the development of functional dressings to prevent bacterial invasion has proven a promising strategy. Cellulose nanocrystals (CNCs), derived from bio-resources and functioning as nanoparticles (NPs), were modified with poly[2-(tert-butylamino) ethyl methacrylate] (PTA) through atom transfer radical polymerization (ATRP) to create CNCs-graft-PTA NPs (CNPs).
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China. Electronic address:
The heat and corrosion resistance of traditional membranes is inadequate, thus making them inadequate for the separation/filtration needs of harsh environments. Polyphenylene sulfide(PPS) can be used to develop new-generation membrane materials, but PPS has problems such as hydrophobicity and UV resistance. This article proposes a PPS membrane for efficient separation/filtration under extreme conditions, which uses melt-blown PPS non-woven fabric and undergoes oxidation and nitrification modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!