Hydroxyapatite is widely used in bone implantation because of its similar mineral composition to natural bone, allowing it to serve as a biocompatible osteoconductive support. A bovine-derived hydroxyapatite (BHA) scaffold was developed through an array of defatting and deproteinization procedures. The BHA scaffold was substituted with fluoride ions using a modified sol-gel method to produce a bovine-derived fluorapatite (BFA) scaffold. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that fluoride ions were successfully substituted into the BHA lattice. According to energy dispersive X-ray analysis, the main inorganic phases contained calcium and phosphorus with a fluoride ratio of ~1-2 wt%. Scanning electron microscopy presented a natural microporous architecture for the BFA scaffold with pore sizes ranging from ~200-600 μm. The BHA scaffold was chemically stable and showed sustained degradation in simulated-body fluid. Young's modulus and yield strength were superior in the BFA scaffold to BHA. In vitro cell culture studies showed that the BFA was biocompatible, supporting the proliferative growth of Saos-2 osteoblast cells and exhibiting osteoinductive features. This unique technique of producing hydroxyapatite from bovine bone with the intent of producing high performance biomedically targeted materials could be used to improve bone repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934353PMC
http://dx.doi.org/10.3390/ma17051107DOI Listing

Publication Analysis

Top Keywords

bha scaffold
12
bfa scaffold
12
bovine-derived hydroxyapatite
8
fluoride ions
8
scaffold
7
bone
5
bha
5
porous fluoride-substituted
4
fluoride-substituted bovine-derived
4
hydroxyapatite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!