CsPbI possesses three photoactive black phases (α, β, and γ) with perovskite structures and a non-photoactive yellow phase (δ) without a perovskite structure. Among these, α-CsPbI exhibits the best performance. However, it only exists at high temperatures and it tends to transform into the δ phase at room temperature, especially in humid environments. Therefore, the phase stability of CsPbI, especially in humid environments, is the main obstacle to its further development. In this study, we studied the interaction of HO with α-CsPbI and the intrinsic defects within it. It was found that the adsorption energy in the bulk is higher than that on the surface (-1.26 eV in the bulk in comparison with -0.60 eV on the surface); thus, HO is expected to have a tendency to diffuse into the bulk once it adsorbs on the surface. Moreover, the intrinsic vacancy of V in the bulk phase can greatly promote HO insertion due to the rearrangement of two I atoms in the two PbI octahedrons nearest to V and the resultant breaking of the Pb-I bond, which could promote the phase transition of α-CsPbI in a humid environment. Moreover, HO adsorption onto V contributes to a further distortion in the vicinity of V, which is expected to enhance the effect of V on the phase transition of α-CsPbI. Clarifying the interaction of HO with α-CsPbI and the intrinsic defects within it may provide guidance for further improvements in the stability of α-CsPbI, especially in humid environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934410PMC
http://dx.doi.org/10.3390/ma17051091DOI Listing

Publication Analysis

Top Keywords

interaction α-cspbi
12
α-cspbi intrinsic
12
intrinsic defects
12
humid environments
12
phase transition
8
transition α-cspbi
8
α-cspbi humid
8
α-cspbi
7
phase
6
first-principles investigation
4

Similar Publications

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Bibliometric analysis of glycolysis and prostate cancer research from 2004 to 2024.

Discov Oncol

January 2025

School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.

Background: Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis.

View Article and Find Full Text PDF

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!