This study elucidates the thermodynamic reaction mechanism of the GeCl hydrogen reduction process for Ge preparation. Five independent reactions in the Ge-Cl-H ternary system were identified, utilizing the phase law, mass conservation principles, and thermodynamic data, with H as the reducing agent. Additionally, the effects of the temperature, feed ratio, and pressure on the germanium deposition rate during the GeCl hydrogen reduction process were investigated, guided by these five reactions. The results indicate that, with fixed temperature and pressure, a higher feed ratio (nH2/nGeCl4) leads to an increased germanium deposition rate. Conversely, with a constant feed ratio, increased pressure results in a lower deposition rate at low temperatures. The optimal operating conditions for germanium preparation via the hydrogen reduction of GeCl were determined: the temperature was 450 °C, the feed ratio was 20, the pressure was 0.1 MPa, and the deposition rate of the germanium was 36.12% under this condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934473 | PMC |
http://dx.doi.org/10.3390/ma17051079 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Weifang University, School of Chemistry & Chemical Engineering and Environmental Engineering, Dongfeng road 5147, 261061, Weifang, CHINA.
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces.
View Article and Find Full Text PDFSmall
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.
Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (HO) photoproduction through two-step one-electron oxygen reduction reaction (ORR).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Background: This in vitro study evaluated the efficacy of professional and home-use fluoride regimens for protecting irradiated enamel, undergoing pH cycling resembling xerostomia.
Methods: Sixty human premolar teeth were irradiated with a total dose of 70 Gy and subsequently sectioned into 3 × 3 cm enamel slabs. These slabs were randomly distributed into five groups (n = 12 per group): professional-use groups received fluoride varnish either weekly (FV1) or biweekly (FV2); home-use groups applied 5000 ppm (FT5) or 1450 ppm (FT) fluoride toothpaste; and a control group (control) received no treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!