A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. | LitMetric

Due to the growing concerns about pharmaceutical contamination and its devastating impact on the economy and the health of humans and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing pollutants. Thus, in this work, banana peels as agro-industrial waste were utilized for synthesizing activated carbon for removing pharmaceuticals, namely amoxicillin and carbamazepine from different water matrices. The chemically activated carbon by phosphoric acid (HPO) was carbonized at temperatures 350 °C, 450 °C and 550 °C. The material was characterized by several techniques such as scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Boehm titration, point of zero charge (pH), BET surface area (S), the proximate and ultimate analyses, X-ray powder diffraction (XRD), and thermos-gravimetric analysis (TGA). The SEM of banana peel activated carbon (BPAC) depicted a semi-regular and heterogeneous morphology, characterized by an abundance of pores with diverse forms and sizes. Boehm titration revealed an increase in the amounts of acidic groups by 0.711 mmol/g due to activation by HPO. FTIR recorded different peaks suggesting significant modifications in the spectroscopic characteristics of the BPAC surface due to the successful activation and adsorption of the pollutant molecules. The pHpzc of BPAC was calculated to be 5.005. The S surface area dramatically increased to 911.59 m/g after the activation. The optimum conditions were 25 °C, a materials dosage of 1.2 g/L, a saturation time of 120 min, a pollutants mixture of 25 mg/L, and a pH of 5. Langmuir exhibits a slightly better fit than Freundlich with a low value of the residual sum of squares (SSE) and the data were better fitted to the pseudo-second-order kinetic. Furthermore, the efficacy of BPAC in eliminating pharmaceuticals from Milli Q water, lake water, and wastewater was successfully investigated over the seven cycles. The results of the present work highlighted a potential usage of agro-industrial waste in eliminating organic micropollutants while exhibiting sustainable management of this waste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934144PMC
http://dx.doi.org/10.3390/ma17051032DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
banana peel
8
peel activated
8
carbon removing
8
agro-industrial waste
8
boehm titration
8
surface area
8
sustainable banana
4
activated
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!