Local ablation therapies are important treatment options for early-stage hepatocellular carcinoma (HCC). Various techniques have been used to perform these therapies efficiently and safely. However, few reports have discussed the usefulness of body position change (BPC). This study aimed to investigate the usefulness of BPC during local ablation therapies in patients with HCC. We evaluated 283 HCC nodules that underwent local ablation therapy. These nodules were categorized into high- or low-risk locations on the basis of their proximity to large vessels, adjacent extrahepatic organs, or poor visibility under ultrasound (US) guidance. The technical success rates, procedure time, and prognosis were evaluated. In this study, 176 (62%) nodules were classified in the high-risk location group. The high-risk location group was treated with techniques such as BPC, artificial pleural fluid, artificial ascites, fusion imaging, and contrast-enhanced US more frequently than the low-risk location group. The technical success rates were 96% and 95% for the high- and low-risk location groups, respectively. Within the high-risk location group, those without BPC had a lower success rate than those with BPC (91% vs. 99%, = 0.015). Notably, BPC emerged as the sole contributing factor to the technical success rate in the high-risk location group (OR = 10, 95% CI 1.2-86, = 0.034). In contrast, no differences were found in the procedure time, local tumor progression rates, intrahepatic distant recurrence rates, and overall survival between the groups with and without BPC in the high-risk location group. In conclusion, BPC during local ablation therapy in patients with HCC in high-risk locations was safe and efficient. The body position should be adjusted for HCC in high-risk locations to maintain good US visibility and ensure a safe puncture route in patients undergoing local ablation therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930729 | PMC |
http://dx.doi.org/10.3390/cancers16051036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!