Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the complex interplay between genetics and environmental factors is vital for enhancing livestock production efficiency while safeguarding animal health. Despite extensive studies on production-specific genes in livestock, exploring how epigenetic mechanisms and heritable modifications govern animal growth and development remains an under-explored frontier with potential implications across all life stages. This study focuses on the GBAF chromatin remodeling complex and evaluates its presence during embryonic and fetal development in swine. Immunocytochemistry and co-immunoprecipitation techniques were employed to investigate the presence and interactions of GBAF subunits BRD9 and GLTSCR1 in porcine oocytes, preimplantation embryos, and cell lines, and transcriptional dynamics of GBAF subunits across these key developmental stages were analyzed using existing RNA-seq datasets. BRD9 and GLTSCR1 were identified across all represented stages, and an interaction between GLTSCR1 and BAF170 was shown in PTr2 and PFF cells. Our findings highlight the ubiquitous presence of GBAF in porcine early development and the potentially novel association between GLTSCR1 and BAF170 in swine. The transcriptional dynamics findings may suggest GBAF-specific contributions during key developmental events. This study contributes to the growing understanding of epigenetic regulators in both swine and mammalian development, emphasizing the implications of GBAF as a modulator of key developmental events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10930984 | PMC |
http://dx.doi.org/10.3390/ani14050773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!