Malignant lymphoma, which impacts the lymphatic system, presents diverse challenges in accurate diagnosis due to its varied subtypes-chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Lymphoma is a form of cancer that begins in the lymphatic system, impacting lymphocytes, which are a specific type of white blood cell. This research addresses these challenges by proposing ensemble and non-ensemble transfer learning models employing pre-trained weights from VGG16, VGG19, DenseNet201, InceptionV3, and Xception. For the ensemble technique, this paper adopts a stack-based ensemble approach. It is a two-level classification approach and best suited for accuracy improvement. Testing on a multiclass dataset of CLL, FL, and MCL reveals exceptional diagnostic accuracy, with DenseNet201, InceptionV3, and Xception exceeding 90% accuracy. The proposed ensemble model, leveraging InceptionV3 and Xception, achieves an outstanding 99% accuracy over 300 epochs, surpassing previous prediction methods. This study demonstrates the feasibility and efficiency of the proposed approach, showcasing its potential in real-world medical applications for precise lymphoma diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931106 | PMC |
http://dx.doi.org/10.3390/diagnostics14050469 | DOI Listing |
Neuroinformatics
January 2025
Department of CSE, Chandigarh Group of Colleges, Landran, Mohali, India.
The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes and generate inaccurate results since they are executed by human beings and cause delays in treatment that can be fatal. Considering these and other shortcomings there exists a need to have more efficient and accurate solutions based on artificial intelligence.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.
Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway.
Background/objectives: Brain tumor classification is a crucial task in medical diagnostics, as early and accurate detection can significantly improve patient outcomes. This study investigates the effectiveness of pre-trained deep learning models in classifying brain MRI images into four categories: Glioma, Meningioma, Pituitary, and No Tumor, aiming to enhance the diagnostic process through automation.
Methods: A publicly available Brain Tumor MRI dataset containing 7023 images was used in this research.
J Imaging
December 2024
Institute of Oceanic Engineering Research, University of Malaga, 29010 Malaga, Spain.
On 11 February 2020, the prevalent outbreak of COVID-19, a coronavirus illness, was declared a global pandemic. Since then, nearly seven million people have died and over 765 million confirmed cases of COVID-19 have been reported. The goal of this study is to develop a diagnostic tool for detecting COVID-19 infections more efficiently.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Centre for Trusted Internet and Community, National University of Singapore, Singapore 119077, Singapore.
Diabetic retinopathy, hypertensive retinopathy, glaucoma, and contrast-related eye diseases are well-recognized conditions resulting from high blood pressure, rising blood glucose, and elevated eye pressure. Later-stage symptoms usually include patches of cotton wool, restricted veins in the optic nerve, and buildup of blood in the optic nerve. Severe consequences include damage of the visual nerve, and retinal artery obstruction, and possible blindness may result from these conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!