Gelation, as an important functional property of soy protein isolate (SPI), can be improved by some green technologies in food manufacturing, including ultrasound, ultrahigh pressure and microwave treatments. This work investigated the effect of an alkaline solubilisation step in SPI extraction combined with sonication on protein properties. The TGase-induced gel of the modified SPI was prepared to explore the effect of ultrasound on gel properties, including structures, strength, water-holding capacity and rheological properties. Additionally, the differences between traditional ultrasound modification of SPI and current modification methods were analyzed. The results showed that the ultrasonication-assisted extraction method could result in a significant increase in extraction rate from 24.68% to 42.25%. Moreover, ultrasound-assisted modification of SPI gels induced with transglutaminase (TGase) exhibited significant improvement in mechanical properties, such as texture, water-holding capacity and rheological properties, In particular, SPI extracted at 400 W ultrasound intensity for 180 s showed the best overall performance in terms of gel properties. Our method efficiently uniformizes gel structure, enhancing mechanical properties compared to conventional ultrasound methods, which reduced energy consumption and costs. These findings provide insights into the production of high-gelation SPI in food manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931305 | PMC |
http://dx.doi.org/10.3390/foods13050738 | DOI Listing |
Plants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFNutrients
January 2025
National Center for Women and Children's Health, National Health Commission of the People's Republic of China, Beijing 100000, China.
Objective: To investigate the relationship between protein-rich foods, various nutritional supplements, and age of natural menopause and its symptoms.
Methods: This study was a large-scale cross-sectional survey. A multi-stage stratified random sampling method was used to select a sample of 52,347 residents aged 35-60 years from 26 districts/counties across 13 cities in 12 provinces in China.
Polymers (Basel)
January 2025
Department of Land, Environment, Agriculture and Forestry, University of Padua, Viale dell'Università 16, 35020 Padua, Italy.
Tannin-based foams have gained attention as a potential bio-based alternative to conventional synthetic foams. Traditionally, namely condensed tannins (CT) have been used, leaving the potential of hydrolysable tannins (HT) largely unexplored. This study compared the performance of chestnut (HT) and quebracho (CT) in tannin-protein-based foams at different tannin ratios.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA.
Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!