Herein, we explore the holistic integration of magnetite-based photocatalysts and techno-economic analysis (TEA) as a sustainable approach in wastewater treatment aligned with the Sustainable Development Goals (SDGs). While considerable attention has been devoted to photocatalytic dye degradation, the nexus between these processes and techno-economic considerations remains relatively unexplored. The review comprehensively examines the fundamental characteristics of magnetite-based photocatalysts, encompassing synthesis methods, composition, and unique properties. It investigates their efficacy in photocatalytic degradation, addressing homogeneous and heterogeneous aspects while discussing strategies to optimize photodegradation efficiency, including curbing electron-hole recombination and mitigating scavenging effects and interference by ions and humic acid. Moreover, the management aspects of magnetite-based photocatalysts are examined, focusing on their reusability and regeneration post-dye removal, along with the potential for reusing treated wastewater in relevant industrial applications. From a techno-economic perspective, the study evaluates the financial feasibility of deploying magnetite-based photocatalysts in wastewater treatment, correlating reduced pollution and the marketing of treated water with social, economic, and environmental objectives. By advocating the integration of magnetite-based photocatalysts and TEA, this paper contributes insights into scalable and profitable sustainable wastewater treatment practices. It underscores the alignment of these practices with SDGs, emphasizing a comprehensive and holistic approach to managing wastewater in ways that meet environmental, economic, and societal objectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-32680-9 | DOI Listing |
Inorg Chem
July 2024
Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea.
Environ Sci Pollut Res Int
March 2024
Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt.
Environ Sci Pollut Res Int
February 2020
Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
The increasing number and concentration of organic pollutants in water stream could become a serious threat in the near future. Magnetite has the potential to degrade pollutants via photocatalysis with a convenient separation process. This study discusses in detail the control size and morphology of magnetite nanoparticles, and their composites with co-precipitation, hydrothermal, sol-gel, and electrochemical route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!