The accumulation of microplastics in various ecosystems has now been well documented and recent evidence suggests detrimental effects on various biological processes due to this pollution. Accumulation of microplastics in the natural environment is ultimately due to the chemical nature of widely used petroleum-based plastic polymers, which typically are inaccessible to biological processing. One way to mitigate this crisis is adoption of plastics that biodegrade if released into natural environments. In this work, we generated microplastic particles from a bio-based, biodegradable thermoplastic polyurethane (TPU-FC1) and demonstrated their rapid biodegradation via direct visualization and respirometry. Furthermore, we isolated multiple bacterial strains capable of using TPU-FC1 as a sole carbon source and characterized their depolymerization products. To visualize biodegradation of TPU materials as real-world products, we generated TPU-coated cotton fabric and an injection molded phone case and documented biodegradation by direct visualization and scanning electron microscopy (SEM), both of which indicated clear structural degradation of these materials and significant biofilm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933395PMC
http://dx.doi.org/10.1038/s41598-024-56492-6DOI Listing

Publication Analysis

Top Keywords

rapid biodegradation
8
thermoplastic polyurethane
8
accumulation microplastics
8
biodegradation direct
8
direct visualization
8
biodegradation microplastics
4
microplastics generated
4
generated bio-based
4
bio-based thermoplastic
4
polyurethane accumulation
4

Similar Publications

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Background: The growing number of AD patients is a public concern all over the world. During the decade, anti-amyloid beta-proteins (Aβ) monoclonal antibodies for AD patients have been developed. Among the immunotherapeutic agents, lecanemab is an anti-Aβ monoclonal antibody that binds to Aβ protofibrils (Aβ PFs), which is an intermediate molecule in Aβ species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!