Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933425PMC
http://dx.doi.org/10.1038/s41420-024-01911-wDOI Listing

Publication Analysis

Top Keywords

atf4 chop
12
cell death
12
ad-induced oncosis
12
oncosis
9
endoplasmic reticulum
8
stress-mediated oncosis
8
hepatocellular carcinoma
8
hcc cells
8
protein synthesis
8
arnicolide induces
4

Similar Publications

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Due to the poor therapeutic efficacy of CRC treatments and poor prognosis of the disease, effective treatment strategies are urgently needed. As long-term proteotoxic stress is a major cause of cell death, agents that induce proteotoxic stress offer a promising strategy for cancer intervention.

View Article and Find Full Text PDF

Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Hypoxia-caused spermatogenesis impairment may contribute to male infertility. FOXA2 has been found to be abundant in spermatogonial stem cells and critical for spermatogenesis. Here we aimed to explore the roles of FOXA2 in regulating spermatogonial cells against hypoxia stimulation.

View Article and Find Full Text PDF

Background: Cardiovascular and renal complications of type 2 diabetes are the main causes of death in diabetic patients. Clinical studies have found that polyethylene glycol loxenatide (PEG-Loxe), a GLP-1 analog widely used to treat type 2 diabetes, boosts renal and cardiac functions in diabetic patients. However, its mechanism of action remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!