Objective: To introduce 2 R-packages that facilitate conducting health economics research on OMOP-based data networks, aiming to standardize and improve the reproducibility, transparency, and transferability of health economic models.
Materials And Methods: We developed the software tools and demonstrated their utility by replicating a UK-based heart failure data analysis across 5 different international databases from Estonia, Spain, Serbia, and the United States.
Results: We examined treatment trajectories of 47 163 patients. The overall incremental cost-effectiveness ratio (ICER) for telemonitoring relative to standard of care was 57 472 €/QALY. Country-specific ICERs were 60 312 €/QALY in Estonia, 58 096 €/QALY in Spain, 40 372 €/QALY in Serbia, and 90 893 €/QALY in the US, which surpassed the established willingness-to-pay thresholds.
Discussion: Currently, the cost-effectiveness analysis lacks standard tools, is performed in ad-hoc manner, and relies heavily on published information that might not be specific for local circumstances. Published results often exhibit a narrow focus, central to a single site, and provide only partial decision criteria, limiting their generalizability and comprehensive utility.
Conclusion: We created 2 R-packages to pioneer cost-effectiveness analysis in OMOP CDM data networks. The first manages state definitions and database interaction, while the second focuses on Markov model learning and profile synthesis. We demonstrated their utility in a multisite heart failure study, comparing telemonitoring and standard care, finding telemonitoring not cost-effective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031209 | PMC |
http://dx.doi.org/10.1093/jamia/ocae044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!